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Common Knowledge and Only-Knowing

Common knowledge: CGφ if each agent in G knows φ, and also knows

that every agent in G knows φ, and knows that everyone in G knows

that everyone in G knows φ, and so on. (e.g. muddy children)

Only knowing: OAφ if the agent A knows φ (KAφ) and moreover

everything they know follows from φ.
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Ideas for the Semantics

A semantics is easy to define.

−→ Consider a Kripke structure K with set of worlds W and accessibility

relations RA for every agent A
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B
(KAp)

w = t, (MAp)
w =?

" We consider only knowing

−→ the not accessible worlds matter

What should the set W of worlds be?
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A First Attempt

World — incorrect definition

Given a propositional vocabulary Σ, a world w consists of

• an interpretation wobj over Σ, and

• for each agent A ∈ A, a set of worlds Aw .

Circular definition!

−→ Approximate the knowledge of agents up to a certain depth and

define a k+1-world w as consisting, among others, of a set Aw of

k-worlds for each agent A.
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The Issues

• Common knowledge

• Infinite depth

−→ ordinals

• Only knowing

• Cannot evaluate only knowing on approximations

−→ Add set Āw of worlds the agent A deems impossible.

−→ Define biworlds

A µ+1-biworld consists of:

• an objective world (0-biworld).

• for each agent A,

• a set Aw of µ-biworlds approximating worlds A deems possible,

• a set Āw of µ-biworlds approximating worlds A deems impossible.
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−→ Add set Āw of worlds the agent A deems impossible.

−→ Define biworlds

A µ+1-biworld consists of:

• an objective world (0-biworld).

• for each agent A,

• a set Aw of µ-biworlds approximating worlds A deems possible,
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An Example

Setting: one agent A, and one propositional variable p in Σ.

w0 = {p} (v0 = ∅) pw0 = t

(KAp)
w0 = u

w1 = (w0,A
w1 = {w0}, Āw1 = {w0, v0}) (KAp)

w1 = t

(MAp)
w1 = f

"w0 ∈ Aw1 ∩ Āw1 (OAp)
w1 = (KAp ∧MAp)

w1 = f

w0 approximates two different worlds (KAKAp)
w1 = u

Definition (completedness for successor ordinals)

A µ+1-biworld w is completed if for all A ∈ A, Aw ∩ Āw = ∅.
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5



An Example

Setting: one agent A, and one propositional variable p in Σ.

w0 = {p} (v0 = ∅) pw0 = t

(KAp)
w0 = u

w1 = (w0,A
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w1 = {w0}, Āw1 = {w0, v0}) (KAp)

w1 = t

(MAp)
w1 = f

"w0 ∈ Aw1 ∩ Āw1 (OAp)
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From Biworlds to Worlds

Three-valued valuation: φw ∈ {t, f , u}

Monotonicity

w ≤p w ′ implies φw ≤p φ
w ′

Smallest successor ordinal depth at which valuation becomes two-valued:

ω2 + 1

Definition (World)

A world is a completed ω2+1-biworld.
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Entailment

Definition (Entailment)

Γ |= ϕ if ϕw = t for every world w such that ψw = t for all ψ ∈ Γ.

Entailment is well-behaved:

1. (Prop) For each propositional tautology φ, we have |= φ.

2. (MP) φ,φ⇒ ψ |= ψ.

3. (Mono) If Γ |= φ, then Γ, ψ |= φ.

4. (Cut) If Γ |= φ and Γ′, φ |= ψ, then Γ, Γ′ |= ψ.

5. (K) |= (KA(φ⇒ ψ) ∧ KAφ) ⇒ KAψ.

6. (Nec) If |= φ, then |= KAφ.

7. (M) If φ ̸|= ψ, then MAφ |= ¬KAψ.

8. (O) OAφ ̸|= ⊥.

9. (Fixed point axiom) |= CGφ ⇐⇒ EG (φ ∧ CGφ).

10. (Induction rule) If φ |= EG (φ ∧ ψ), then φ |= CGψ.
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Common Properties of Knowledge

• Positive introspection: KAφ⇒ KAKAφ.

• Negative introspection: ¬KAφ⇒ KA¬KAφ

• Truthfulness: KAφ⇒ φ

• Positive introspection can be added to our framework without

problems.

• In any semantics satisfying negative introspection and (M), MAφ

and OAφ are unsatisfiable for any satisfiable φ.

- Future research: Incorporate semantic notions from autoepistemic

logic for modifying (M) and semantics of MAφ.

• Truthfulness makes OA(KAp ∨KAq) unsatisfiable, thus violating (O).
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Related Work

• Common knowledge goes back to Lewis (1969), only knowing to

Levesque (1990).

First attempt to combine them by Aucher and Belle (2015):

• OA replaced by On
A for only knowing up to depth n.

• O0
Aφ means “Considering only knowledge about objective facts,

A only knows φ”.

• Belle and Lakemeyer (2015) introduce a semantics similar to our

ω-biworlds (but with no Āw ).

• OAφ unsatisfiable for some φ.

• Van Hertum (2016) introduces a transfinite construction similar to

ours (but with no Āw ).

• Similar problems

Motivation for formally stating desirable properties of |=.

Main insight: Need Āw

Problem with one-sided approximations: No criterion for completedness.
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Conclusions

Goal: multi-agent epistemic logic with common knowledge and only

knowing

• Definition of µ-biworld

• Main new idea: approximate worlds deemed possible and worlds

deemed impossible

• Desirable properties of |=
• Studied adding truthfulness, positive introspection and negative

introspection
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